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Abstract

Up to 1151 “black box” movie recommenda-
tion models were combined into an ensemble
predictor. Significant success was achieved
on the binary AUC task, using a deep neu-
ral network, a gated classifier and multiple
logistic regression. Further improvement was
achieved by adding hand-coded features, and
by modelling the joint distribution of the
movie models using a SVD and denoising
auto-encoders.

On the large AUC task, the baseline1 AOC2

performance of 0.1635 was improved to
0.1461. On the more difficult medium task,
the baseline performance of 0.3384 was im-
proved to 0.3144, and on the small task, the
already low baseline of 0.0597 was slightly im-
proved to 0.0571.

Less success was achieved on the regres-
sion RMSE task. The best result, on the
large task, reduced the baseline of 0.4419 to
0.43853.

The “black box” nature of the challenge
and the underlying noise in the labels (to
which the RMSE score is particularly sensi-
tive) make progress difficult. An alternative
framework for ensembling is discussed which,
whilst placing more requirements on model
builders, would likely lead to better improve-
ment in the ensembles.

1. Introduction

The AUSDM ensembling challenge ran for approxi-
mately six weeks in October and November, 2009. The

1The average of the most accurate 20 models over a
held-out set of 20% of the training set.

2AOC = 1 - AUC
3These RMSE scores are calculated on a ratings scale

of [-1,1] not [1000,5000] as in the challenge, and should be
multiplied by 2000 to be comparable.

Shameless plug: I’m currently looking for consulting work:
Recommendation Engines, Machine Learning, Data Min-
ing, Data Analysis, Computational Linguistics

goal of the challenge was to combine existing person-
alised movie rating models into a more powerful en-
semble predictor. The dataset was derived from work
on the Netflix Prize (Netflix, 2007).

1.1. Netflix Prize

The goal of the Netflix Prize was to predict the rat-
ing (from 1 to 5) that a person would give to a film
on a particular date, given a training dataset that
contained examples of ratings that had already been
made. These predictions were then compared to rat-
ings collected from users to determine the efficiency of
the predictions.

Three datasets were provided: A training dataset with
100 million (user, date, rating) triplets; a disjoint
“probe” dataset with 1.4 million (user, date, rating)
triplets that were not included in the training set, and
a testing dataset with (user, date) pairs. The goal of
the challenge was to predict the rating for each of these
pairs.

The score was evaluated with the Root Mean Squared
Error (RMSE):

RMSE =

√√√√ 1
n

n∑
i=1

(xi − x̂i)2 (1)

where xi is the user provided rating and x̂i the model’s
prediction. This measure is quadratic in the magni-
tude of the errors, which makes it very sensitive to
outliers and noise.

The leading entries in this challenge came from coali-
tions of collaborating teams. The teams would inde-
pendently produce models that were trained only on
the training set. These models would then be run
to predict the values in both the probe and testing
datasets. These predicted results would then be ex-
changed within the group of collaborators, and a final
blended model would be produced, with the parame-
ters for the blend learnt from the probe set.

Blending was necessary in order to achieve competi-
tive performance, but most effort was expended in the
component models.
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Table 1. Problem sizes and row counts.

Size Training Testing Models Size

Small 15,000 15,000 200 15MB
Medium 25,000 25,000 250 25MB
Large 50,000 50,000 1151 300MB

Table 2. Label distribution for the large RMSE training
set (50,000 samples). The mean label is 3.67. The Mean
Model column gives the mean output over all models over
all examples rated with the given label.

Label Freq Percent Mean Model

1 2534 5.1 2.86
2 4877 9.8 3.09
3 12489 25.0 3.40
4 16422 32.8 3.76
5 13678 27.3 4.20

1.2. AUSDM Challenge

The AUSDM Challenge was designed to move the fo-
cus away from the component models and onto the
blending algorithm. The organisers first approached
the two leading coalitions from the Netflix Prize and
obtained from them the probe set results of all of their
models (some 1151 in total). From this large combined
set of data, random sampling was used to produce
twelve datasets, with three data sizes (Small, Medium
and Large as described in table 1), two problem types
(AUC and RMSE) and two datasets for each (a train-
ing set including target values, and a testing set with
the target values removed).

No information about which movie, user or date a pre-
diction applied was retained. As a result, the focus
was entirely on the properties of the blending algo-
rithms, as no side-channel information was available.
This point will be discussed below.

1.2.1. RMSE Task

The RMSE task in the AUSDM Challenge was iden-
tical to that in the Netflix Prize: minimise the RMSE
in equation 1.

Table 2 shows how the data is for this task is skewed
towards the higher ratings, with far fewer 1 and 2 star
ratings than the rest. As a result, the average model
predictions are tightly clustered around the label mean
of 3.67, and outliers are rare (the average model output
for the 1 label is 2.86, nearly 2 stars away).

Table 3. AUC Task and correspondence between ±1 and
star values, inferred from comparison of model means with
RMSE dataset.

Size -1 +1 AOC Top 20

Small 1 5 0.0597
Medium 2 3 0.3384
Large 2 4 0.1635

1.2.2. AUC Task

The AUC task was a binary ranking problem. Two
ratings were selected (for example, 1 star and 5 stars),
and rows with either one of these ratings were sampled.
These two rows were then assigned the labels +1 and
−1. The goal was to minimise the AUC score, which
is a measure of the ability to separate the +1 from the
−1 values via a real-valued confidence function. The
AUC score is linear in the magnitude of the errors.
It is possible to generate an AUC score from RMSE
values.

Table 3 shows details of the three tasks and the in-
ferred correspondence between the ±1 values and the
number of stars. A baseline AOC score using the av-
erage RMSE of the 20 models with the highest AUC
score is also provided4 Due to the different selection
of label values, the three tasks differ significantly in
the baseline score and their potential for improvement
over the baseline.

As a one-person team with limited time and labour,
most effort was expended on this task. It is arguable
that it represents better the real-world application of
recommendation engines5.

There should also be more improvement possible on
the AUC task, as the cost of making an error is linear
in the magnitude of the error, rather than quadratic
as in the RMSE task. Larger errors are therefore less
costly, and there should be some improvement possible
simply by spreading the model predictions away from
the mean.

4The AOC (area over the curve, AOC = 1−AUC) was
used so that the score could be interpreted as an error like
the RMSE.

5For example, Netflix presumably wants to optimise the
probability that someone who sees a recommendation rents
the film (or rents the film and doesn’t hate it): their rev-
enue is increased by people renting more films (more active
members have more profitable subscription levels and are
less likely to let their subscription lapse).

2



AUSDM Challenge 2009 Report: Team “Barneso”

2. Solution Strategy

Upon initial investigation of the problem, it became
obvious that highly non-linear methods (boosting, de-
cision trees, etc) were completely unsuitable to the
task at hand due to their high sensitivity to noise6.
Even the parameters for linear regression, one of the
smoothest models possible, would vary wildly. These
experiments led to the formulation of the following
strategy:

1. Model the accuracy of the models over the differ-
ent regions of the state-space;

2. Use a decomposition with an information bottle-
neck to reject noise and model the variation of
models explicitly;

3. Add hand-coded smooth features derived from the
model outputs to make model-building easier and
to reject noise.

4. Reject noise as aggressively as possible:

(a) Use ensembles of random samples of predic-
tors;

(b) Use noise-rejecting variants (such as ridge re-
gression) wherever possible.

5. Produce multiple models with as much diversity
as possible and merge them to produce the final
result.

2.1. Modelling State-Space Accuracy

It is unlikely that ensembling algorithm would ever be
sufficiently well informed to extrapolate outside the
range spanned by its component models, especially in
a black-box setting. A potential strategy is to interpo-
late between the models, weighting those that are more
likely to be accurate on a particular prediction more
heavily. A confidence function (a classifier for each
model) can be used to provide these gating weights.
Figure 1 illustrates this idea.

Several definitions of “accurate” were tried. For the
AUC task, we said that a prediction of 1 ≤ x̂ < 3
was accurate for the −1 label, and that 3 ≤ x̂ ≤ 5
for the +1 class. For RMSE, we tried to learn directly
the error (difference between the label and the predic-
tion) and a binary function of whether |x − x̂| < 1
(whether the predicted value was within one star of
the correct value). Crucially, each confidence function
had the benefit of information about the other model’s
predictions in order to generate its value.

6It was rare that any of these techniques would even
approach the baseline accuracy
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Figure 1. Gated Classifier Model. Note that all confidence
classifiers receive the value of all models, not just the one
for which it is generating a confidence value.

It proved to be extremely difficult to learn useful gat-
ing functions. The output of the function tended to
be nearly identical over all input models, and thus the
gating returned a value close to the average of the mod-
els.

2.2. Decompositions

By decomposition, we mean a way of reducing a set
of 1151× 50000 independent values (the outputs of all
of the models over all examples) into a smaller dimen-
sional space that preserves as much of the behaviour
of the 1151 values7.

These techniques are also known as “information bot-
tleneck” methods or auto-encoders, tend to use some
kind of a factorisation (explicit or implicit) to approxi-
mate a dataset with a large number of free parameters
with a much smaller number of free parameters (for
example, 50 or 200). They work by learning an (en-
coder, decoder) pair. The encoder reduces the 1151
dimensional input vector into a smaller internal repre-
sentation. The decoder takes the encoded vector and
reproduces the 1151 values as much as possible. A
good encoder/decoder pair will do this without intro-
ducing much of an error. Frequently, the effect of the
(encode, decode) sequence will be to remove noise from
the input whilst keeping its essential characteristics.
The encoded values can then be said to represent the
deep structure of the data.

None of these techniques need to know the values of the
7In this section, we use numbers from the Large task

for concreteness.

3
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ratings: they model the joint distribution of the input
models. They can be trained on an unlabelled set of
data (for example, the testing set) to avoid biasing the
training set.

2.2.1. Singular Value Decomposition

The simplest decomposition used was the SVD (Deer-
wester et al., 1990). It uses linear algebra to generate
an optimal reduced rank representation of a series of
models.

Applying the SVD to a matrix M breaks it down as
follows:

M = UΣV T (2)

where M (for the large contest) is the 50, 000 × 1151
matrix of the model outputs, U is a 50, 000 × 1151
matrix of left-singular orthonormal vectors, Σ is a
1151 × 1151 diagonal matrix with diagonal entries
[σ1σ2 . . . σ1151] and V is a 1151×1151 matrix of right-
singular orthonormal vectors.

The σ values in Σ are all non-negative and are in de-
creasing order of magnitude. In order to reconstruct
the best possible approximation of M of rank n, it is
sufficient to set

M ≈ M̂ = UnΣNV
T
N (3)

where M̂ is a 50, 000× 1151 rank-n approximation to
M , Un is a 50, 000 × n matrix containing the first n
columns of U , Σn is a n×n diagonal matrix containing
the first n rows and columns of Σ, and Vn is a 1151×n
matrix containing the first n columns of V . The error
of any element in M is bounded by the magnitude of
the excluded singular values

∑1151
i=n+1 σi.

This matrix can be used to reduce an 1151 element
model vector x into a n-dimensional representation z
which contains as much of the information in x as pos-
sible. Simply take

z = Σ−1
n V T

n x. (4)

The features in z contain as much as possible of the
information in x, but in much fewer dimensions (typi-
cal values of n used in the challenge were 50, 100 and
200), and as a result have much of the noise removed.
Even if the number of dimensions is not reduced, the
z values tend to make better features for classification
as they are orthogonal from each other.

We can also produce x̂, which is a reconstituted version
of x produced from z:

x̂ = VnΣnz (5)

and measure its error:

E = ||x− x̂|| (6)

If E is small, the information in z was sufficient to
capture all of the information in x. If E is large, it
means that one or more of the dimensions excluded
from the decomposition was important.

2.2.2. Denoising Auto-Encoder Decomposition

One problem with the singular value decomposition
is that the the decomposition is entirely linear. A de-
noising auto-encoder (Vincent et al., 2008) can be used
to generate a non-linear decomposition, which can ap-
proximate a much larger set of (non-linear) underlying
phenomena.

The goal of an auto encoder is to learn the iden-
tity function: two functions f(·) and g(·) such that
f(g(x)) = x. Generally, in order to be interesting an
auto-encoder will include some kind of restriction: for
example, the number of dimensions in the range of f is
smaller than the number of dimensions in its domain.

In neural networks, the most commonly used formula-
tion shares an activation matrix W between the for-
ward and reverse directions:

z = f(x) = t(Wx + b) (7)

x̂ = g(z) = t(WT z + c) (8)

When t(·) is a non-linear squashing function such as
t(x) = tanh(x), we can use back-propagation to learn
a nonlinear decomposition.

Note that these auto-encoders can be stacked one on
top of the other, so that we apply all of the forward
functions one after the other and then all of the reverse
directions in the opposite order.

In order to make the auto encoder generalise (and learn
higher level features), we need to either a) add noise
to the input (and train the auto encoder to remove the
noise) and/or b) create an “information bottleneck”,
by reducing the number of neural network units lower
down in the stack. This leads to the architecture used
in the challenge, which is shown in figure 2:

In order to train the auto-encoders, a standard back-
propagation algorithm can be used to perform gradient
descent on the parameter space. Normally, a stack

4
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Input (200-1151)

Hidden 1 (250)
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Figure 2. Denoising auto-encoder decomposition used in
the challenge.

of auto encoders will be trained a layer at a time on
the output of the previous layer (in a greedy manner),
although it is possible to train the entire stack at once.
Both methods were used in the challenge.

Improvements Several improvements were made to
the auto-encoder model described previously.

Firstly, it is known that a linear neural network un-
der the right conditions will approximate the singular
value decomposition. It would make sense for the auto
encoder described in the previous section to be able to
do so. However, if we set t to the identity function and
W = Σ−1

n V T
n in 7 as in equation 4 (ignoring the bias

terms), we get

z = Σ−1
n V T

n x (9)

and so

x̂ = Vn

(
Σ−1

n

)T
Σ−1

n V T
n x = Σ−2

n x (10)

where we rely on the fact that V TV = I due to V
being orthonormal.

Thus, this auto-encoder can only reproduce its input,
no matter the dimensionality, if all of the singular val-
ues of our data matrix are unitary, which is rarely
true. The alternative of not including Σn in the en-
coder function is not satisfactory as this will cause the
neurons corresponding to the high-valued singular val-
ues to dominate the training.

To rectify this problem, we added two extra terms to
the decoding function 8:

x̂ = t(DWTEz + c) (11)

where D and E are diagonal matrices that control the
input and output gain of the activation matrix WT .
Then, by setting W = Σ−1

n V T
n , E = I and D = Σ−2

n

we can achieve our goal of emulating the SVD.

A second improvement was made to the treatment of
noisy inputs. In (Vincent et al., 2008), noisy inputs
are simply set to zero. This causes problems with the
auto encoder, as the same weight in W is simultane-
ously trying to reject noise, contribute to the hidden
state and reproduce the output from the hidden state.
Instead, as plenty of data was available, we used a
separate activation matrix WN for the noisy inputs.
Those inputs which were chosen to be noisy were as-
sumed to have an input value of 1 and connected via
WN instead of W to the hidden layer. This change sig-
nificantly increased the accuracy of the reconstruction
in the no-noise case8.

The third improvement was made in the addition of
noise. It was observed that the auto-encoders actually
were better at reproducing the (noiseless) input when
that input had noise added than when it was presented
in a pristine state. This was because the auto-encoders
were depending upon a certain number of their inputs
having the value zero: if 20% noise is added and an
internal state represents the mean of the inputs, then
that state is going to be 125% the mean when no noise
is present. In order to prevent the auto-encoders from
expecting the noise to be present, every second exam-
ple was presented with no noise added. Again, this
change significantly increased the auto-encoder’s re-
construction performance in the noiseless case.

2.3. Derived Features

In order to make it easier for the classifiers to work,
the component models were augmented with several
derived features:

• The minimum, maximum, mean and standard de-
viation of the model outputs;

• For of the 10 highest ranking models:

– The minimum, maximum and mean value;
– Variables comparing the spread of values over

these 10 models and the spread of values over
all of the models;

– For each of the 10 models, the output of the
model and the number of standard deviations

8It has not been proved that an auto-encoder needs to
do a good job of reconstruction in order to provide a useful
decomposition, but intuitively it seems necessary.

5
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from the mean of all models;
– The difference between the output of this

model and the closest integer;
– If a decomposition was used, the error of the

reconstruction of this model by the decom-
position;

• The output of the decomposition (SVD or Denois-
ing Auto-Encoder), if there was any;

• The RMS error of the decomposition, as in equa-
tion 6.

2.4. Multiple Models

Highly non-linear algorithms such as decision trees, re-
gression trees and especially meta-algorithms like Ad-
aboost tend to have big problems dealing with noise.
One way of mitigating this effect is by averaging mod-
els trained over random subsets of the data. The fol-
lowing techniques were used:

• Random decision trees and regression trees were
used to train the final classifier in the gated mod-
els. The most successful model used 500 bags
(with random selection of examples) of 10 iter-
ations of boosted random decision trees (with a
random subset of the features).

• Wherever regression (linear or logistic) was used,
the regression was performed multiple (20-500)
times and the average of the models taken. A
random subset of examples and of features was
chosen.

2.5. Ridge Regression

Ridge regression was used in place of linear regression
in all circumstances, including within the Iteratively
Reweighed Least Squares routines used to calculate
the logistic regression coefficients (Komarek & Moore,
2005).

Ridge regression is a regularised form of linear regres-
sion, that penalises high weights in the model coef-
ficients x. The algorithm calculates the value of the
vector x that minimises the following error:

E = ||Wx−b||+λ||b||2 ← Regularisation term (12)

The coefficient λ describes the trade-off between fitting
the data and reducing the size of the parameters in x.
The optimal value of λ can be efficiently calculated
using leave-one-out cross validation.

Input (200-1151)

Hidden 1 (250)

Hidden 2 (150)

Hidden 3 (100)

Hidden 4 (50)Extra
Features
(~100)

Hidden 5 (50)

Output (1)

Initialised
from
DNAE

Figure 3. Deep Network Model.

Ridge regression also has the advantage of working well
on rank-deficient or poorly conditioned problems, un-
like standard linear regression. This is important in
the context of this work: there are a lot of small, but
not insignificant singular values in the data.

2.6. Deep Neural Network Model

The denoising auto-encoders are trained with no
knowledge of the target feature. By adding an extra
output layer or two and training the entire resulting
network with back-propagation, the features that it
has learnt in its internal representation can be fine-
tuned to help produce a target output (here, the label
for the AUC or RMSE model). Figure 3 illustrates the
architecture.

3. Method

In order to generate results, a large number of pre-
dictors were trained implementing the ideas described
above. Each of these predictors was trained on 80%
of the training data, with the other 20% (always the
same part) held out in order to train the final blending
model. When each predictor was run, it created:

1. A blending results file containing the model’s un-
biased prediction for each entry of the 20% of final
blending data held out;

2. A submission results file containing the model’s
prediction for each entry of the scoring set (for
which labels weren’t available).

6
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Table 4. Denoising Auto-Encoder Decompositions. Layer
Iter is the number of back-propagation iterations that each
layer was trained by itself, Stack Iter is the number of back-
propagation iterations that the entire stack was trained
after each layer was added. Bug indicates the presence of
a bug described in section 3.1.

Model Layer Iter Stack Iter Bug

dnae1 500 500
√

dnae2 800 0
dnae3 400 200

Once all of the files were available, they were combined
using a final blending stage, the result of which was the
submitted result.

3.1. Decompositions

A total of four decompositions were generated: one
SVD decomposition and three denoising auto-encoder
decompositions. Table 4 shows the parameters used.
In each case, the layer sizes are as indicated in 2.
Learning rates were set via manual tuning. On the
small dataset, 80% of the examples were randomly se-
lected on each iteration; 50% on the medium and 10%
on the large. The presentation order of examples was
random. The bug referred to in the table when train-
ing DNAE1 was the use of the non-noisy input vector
when back-propagating, leading to noisy inputs being
incorrectly updated.

3.2. Multiple Regression

The multiple regression predictors turned out to be the
most powerful, particularly in the RMSE task. This
is largely due to their ability to reject noise due to
their inherent smoothness, the regularisation provided
by ridge regression and the smoothing provided by the
random selection of features and examples.

Table 5 describes the parameters for the different mod-
els. In all cases, 500 separate regression models were
combined (linear regression for the RMSE task; logis-
tic regression for the AUC task) on 6,000 randomly
selected examples. On the small task, the number of
features sampled and the decomposition order were set
to 100; for the medium task 150 and for the large task
200. When extra features were used, they were sam-
pled along with the model outputs.

3.3. Deep Neural Networks

Table 6 describes the deep network models used. Each
of these had an architecture with 250, 150, 100 and
50 units (from the denoising auto-encoders) and an-

Table 5. Multiple Regression Models Used

Model Decomposition Extra Features

mr1
mr2 SVD
mr3 SVD

√

mr4 DNAE1
mr5 DNAE1

√

mr6 DNAE2
mr7 DNAE2

√

mr8 DNAE3
mr9 DNAE3

√

Table 6. Deep Network Models Used

Model Decomposition Extra Features

dn1 DNAE2
√

dn2 DNAE2
dn3 DNAE3
dn4 DNAE3

√

other 50 hidden units feeding into the single unit out-
put layer. The extra features are not fed in the top,
but directly into the 50 unit hidden layer, bypassing
the auto-encoder. Standard tanh units were used.

3.4. Gated Merger

Several models of the “gated” merger described in 2.1
were tried. This model tended to perform reasonably
well for the AUC task, but poorly for the RMSE task.
Presumably, this is because the two-stage nature of
the model caused the noise to be amplified between
the stages.

The models differed in which decomposition they used
(no decomposition, the SVD or the denoising auto-
encoders), whether or not they used extra features,
and the technique used for the final score once the
confidence-modified values had been produced. Table
7 shows these parameters.

3.5. Classifier Models

For the RMSE data, two classifier models were used.
One, rtrees used a random forest of 200 regression
trees. The other, mclass, learnt a binary classifier for
several discrete movie ratings (1, 2, 3, 4 or 5 stars;
2-5 stars; 3-5 stars; 4-5 stars) using a random forest
of 5000 decision trees, and combined these predictions
using linear regression. Neither model performed par-
ticularly well.

7
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Table 7. Gated Merger Models Used

Model Decomp. Blend RMSE Blend AUC

gated SVD(200) LR Rand Forest
gated2 LR Rand Forest
gated3 DNAE1 LR Rand Forest
gated4 DNAE2 LR Rand Forest
gated5 DNAE3 LR Rand Forest
gated6 DNAE3 Rand Forest N/A
gated7 DNAE3 Multi LR N/A

3.6. Final Blending

Final blending was performed using a cross-validation
training on the 20% held out data. The held out data
was broken into 10 folds, and 10 different multiple re-
gression blenders were trained, each training on 9 and
leaving out one fold. The performance of the merged
model on the entire 20% held out was then evaluated.
The challenge submission files were generated by run-
ning the 10 multiple regression blenders over the entire
testing set, and averaging the results.

This strategy was adapted in order to reduce the im-
pact that a “rogue” model (with a high error rate,
or over-fit on its training data) would have on the fi-
nal blend. It is unlikely that performing (yet another)
round of blending of already blended models would
significantly improve the results; this bootstrapping
with no additional leverage. Uniform linear blending
appeared to work just as well.

3.7. Implementation

In practise, this challenge turned out to be as much
about software engineering as about data mining.

The biggest reason for this was the amount of noise in
the data. This necessitated that models be run many
times (up to 500) and the results averaged, with a
corresponding increase in compute time.

Due to the limited hardware resources available9 and
the large number of tasks, it was necessary that the
software be both memory and CPU efficient. The en-
tire code was vectorised to take advantage of the vector
unit, multi-threaded10 and the bottlenecks were pro-
filed and carefully optimised. Single precision arith-
metic was used wherever possible11 due to its two-fold

9One quad core “hyper-threaded” (8 virtual cores) desk-
top machine with 6GB of RAM, one dual core laptop with
2GB of RAM

10On the desktop machine, 8 threads were run to fully
exploit the hyper-threaded processor

11It is frequently not possible. For example, whenever

advantage in execution speed on modern hardware.

To save memory bandwidth, parameters were stored
using as small a precision as possible and care was
taken not to duplicate memory when splitting datasets
into training and validation sets.

The fact that there were six different tasks (AUC and
RMSE for the small, medium and large datasets) also
increased the amount of CPU time and engineering
work required, especially in manually tuning the back-
propagation parameters.

In the end, about 5,000 lines of C++ code were written
for the challenge directly, and about 10,000 lines added
to the underlying machine learning library (primarily
the code to perform Ridge Regression and the denois-
ing auto-encoder routines). The entire set of results
could be reproduced in about 24 hours on a consumer
desktop PC.

The software was developed on Linux. The only signif-
icant external libraries used were LAPACK and BLAS
for the linear algebra routines.

3.8. Open Source

The source code for this submission is avail-
able. The machine learning library used
to perform the heavy lifting is available at
http://bitbucket.org/jeremy barnes/jml/. The
source code of the actual AUSDM submission is
available at http://github.com/jeremybarnes/ausdm.
Both are available under the Affero GNU Public
License version 3. The ausdm repository also contains
some of the data files used in the building of the
results.

4. Results

4.1. Diversity and Independence of Model
Predictions

Table 8 shows the distribution of singular values over
the six tasks. The top part lists values of the singular
values; the bottom part lists counts of various cate-
gories.

The spread of the singular values give an idea of the
diversity of the models in the data: the small singular
values correspond to models that don’t contain much
more information over and above those with higher
singular values. The small task appears to have little
redundancy in the provided models, whereas the large
task has significant redundancy, and potentially even

accumulating a series of numbers it is necessary to accu-
mulate in double precision even if the numbers being ac-
cumulated are only in single precision.

8



AUSDM Challenge 2009 Report: Team “Barneso”

Table 8. Independence and Conditioning of Models. The
singular values of each data matrix were taken. The top
half lists values (highest, second highest and lowest); the
bottom half shows a histogram over orders of magnitude.

Small Medium Large

Type AUC RMS AUC RMS AUC RMS

Top 936 806 674 1040 2830 3538
2nd 69 55 83 77 257 253
min 0.9 0.9 0.4 0.8 10−5 10−5

> 100 1 1 1 1 9 9
> 10 72 59 88 87 433 428
> 1 199 197 247 249 1071 1074
> 0.1 200 200 250 250 1143 1143
≤ 0.1 0 0 0 0 8 8

models that were (pre-blended) linear combinations of
others.

4.2. Decompositions

Table 9 shows the reconstruction accuracy of the de-
compositions of different orders over the training sets.
The reconstruction accuracy increases as we move from
DNAE1 to DNAE2 to DNAE3, but that they aren’t as
efficient at reproducing the data as the SVD. This is
a disappointing result: the non-linearities were either
not being exploited or were not useful. DNAE3 is par-
ticularly interesting, as it shows the effect of training
the stack as a whole rather than each layer individu-
ally. Doing so reduces the efficiency of the individual
layers as separate auto-encoders, but to improves the
entire stack.

Looking at the results of the gated (SVD decom-
position), gated3 (DNAE1 decomposition), gated4
(DNAE2 decomposition) and gated4 (DNAE3 decom-
position) algorithms (which differ only in the decom-
position used), it appears that the SVD decomposition
is the most useful, followed by the DNAE3, DNAE2
and DNAE1 decompositions. These results are dis-
appointing. It is possible that allowing interactions
between the features (as in (Larochelle et al., 2009))
would improve matters, but as they stand these results
would have to be considered a failure.

4.3. AUC Results

We present the AUC results in table 10, showing the
performance of both the component models and the
blended result. The table for each task contains two
columns of numerical information. The first describes
the error score of the model, with the lift (reduction
in error) as compared with the baseline model, multi-

Table 9. Decomposition reconstruction accuracies. These
are the total RMSE over all inputs for different decompo-
sitions as the order (dimensionality) of the decomposition
varies.

Set Order SVD DAE1 DAE2 DAE3

250 0.00 0.86 0.81 6.51
S 150 0.20 1.48 1.15 3.51

AUC 100 0.44 1.99 1.30 1.92
50 0.72 2.22 1.40 0.92

250 0.00 0.62 0.62 3.58
M 150 0.30 1.09 1.02 3.44

AUC 100 0.48 1.52 1.42 2.87
50 0.74 1.97 1.80 0.90

250 1.00 2.08 2.18 17
L 150 1.31 3.24 3.05 4.88

AUC 100 1.52 4.18 3.74 2.98
50 1.84 5.01 4.34 2.08

250 0.99 2.31 2.51 23
L 150 1.30 3.58 3.42 5.52

RMSE 100 1.51 4.56 4.08 2.84
50 1.82 5.38 4.49 2.08

plied by 1000. The second shows the average blending
weight of the model (over 10 folds) as well as the stan-
dard deviation in this value. The blending weights
give an idea of the importance of the model to the
final result.

The multiple regression models appear to be the most
consistently accurate, followed by the gated models.
The deep network models appeared to be used mostly
to attenuate noise, as their blending weights were more
negative than positive. The greatest lift was obtained
on the medium task (which was also the hardest, and
consequently had the most scope for improvement).
A significant improvement was also obtained on the
large task. The lift on the small task was small, but
(as will be discussed below) there was not much scope
for improvement due to the noise ceiling.

It is instructive to compare the multiple regression
models to determine the effect of the various strate-
gies. Recall from table 5 that mr1 contained only the
component models, mr2 augmented this with an SVD
and mr3 with the extra features. Any improvement in
mr1 is therefore attributable to the calibration of the
component scores from the RMSE (quadratic error)
task to the AUC (linear error) task.

It seems that most of the improvement is due to the
extra features, as mr1 and mr2 are not significantly dif-
ferent, but mr3 is always significantly better than the
others. On the other hand, it appears from the rest
of the mr results that, especially on the large task, the
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Table 10. AUC Blending Results. The lift is 1000 times the improvement over the baseline score. The weight values,
which describe the blending weight in the final model, are reported as mean ± standard deviation.

Task Small Medium Large

Model AOC Lift Weight AOC Lift Weight AOC Lift Weight

dn1 0.0585 1.2 -0.36±0.32 0.3299 8.5 0.04±0.23 0.1581 5.4 -0.41±0.20
dn2 0.0611 -1.4 0.20±0.19 0.3431 -4.7 -0.51±0.22 0.1634 0.1 -0.05±0.21
dn3 0.0611 -1.4 0.19±0.17 0.3432 -4.8 -0.49±0.19 0.1634 0.1 -0.60±0.23
dn4 0.0585 1.2 -0.34±0.30 0.3300 8.4 0.05±0.24 0.1581 5.4 -0.83±0.31

gated 0.0565 3.2 0.80±0.23 0.3239 14.5 0.60±0.25 0.1497 13.8 1.09±0.27
gated2 0.0584 1.3 0.26±0.24 0.3318 6.6 -0.08±0.27 0.1528 10.7 0.32±0.24
gated3 0.0592 0.5 -0.55±0.35 0.3282 10.2 0.09±0.29 0.1524 11.1 0.19±0.32
gated4 0.0586 1.1 -0.02±0.29 0.3303 8.1 -0.26±0.44 0.1528 10.7 -0.64±0.33
gated5 0.0580 1.7 0.37±0.14 0.3264 12.0 0.11±0.31 0.1519 11.6 0.32±0.13

mr1 0.0639 -4.2 0.23±0.33 0.3208 17.6 0.47±0.47 0.1581 5.4 -0.08±0.39
mr2 0.0633 -3.6 0.18±0.33 0.3203 18.1 0.46±0.49 0.1584 5.1 -0.88±0.30
mr3 0.0575 2.2 0.57±0.51 0.3174 21.0 0.03±0.51 0.1499 13.6 1.84±0.69
mr4 0.0573 2.4 0.39±0.27 0.3196 18.8 0.82±0.34 0.1508 12.7 -0.75±0.38
mr5 0.0574 2.3 -0.29±0.29 0.3128 25.6 0.80±0.44 0.1485 15.0 1.58±0.47
mr6 0.0573 2.4 0.51±0.30 0.3201 18.3 0.61±0.22 0.1505 13.0 0.13±0.29
mr7 0.0573 2.4 -0.21±0.25 0.3135 24.9 0.65±0.42 0.1485 15.0 0.74±0.43
mr8 0.0572 2.5 0.90±0.60 0.3186 19.8 -0.06±0.30 0.1500 13.5 2.04±0.57
mr9 0.0574 2.3 -0.04±0.16 0.3146 23.8 0.24±0.24 0.1484 15.1 0.58±0.66

combined 0.0571 2.6 0.3144 24.0 0.1461 17.4

DNAE models provide a useful substitute for the ex-
tra features, whereas the SVD does not. Or in other
words, the DNAE decompositions manage to implic-
itly capture most of the information in the extra fea-
tures whereas the SVD does not.

The deep network models (dn1 to dn4) did not perform
well, but were improved by adding the extra features.

In all cases, the gated model worked better than
gated2 through gated4. As these models always had
extra features available, this shows that the SVD de-
composition is more useful than the DNAE decompo-
sitions.

Overall, the AUC results successfully provided a mod-
est lift. It was particularly encouraging to see that the
merged model on the large dataset was significantly
more accurate than any of its component predictors.

4.3.1. Noise

The small AUC task was particularly noisy, and only
a small improvement seems possible. One explana-
tion for this would be the selection of target values
for this task, which are (−1 → 1) and (+1 → 5).
These two values, and particularly the value 1, are
associated with extreme emotional reactions to films
by users, much of which cannot realistically be mod-

elled12. The relative scarcity of 1 rankings in the
dataset also makes them more susceptible to noise (ac-
cidental mouse clicks, distraction, cats walking on key-
boards, etc), which are probably uniformly distributed
over the dataset. When adapting to the large and par-
ticularly the medium task at the end of the challenge,
it was observed that noise was much less of a problem.

4.4. RMSE Results

The RMSE task results presented in table 11 are not
encouraging. The deep network results were all very
poor and the gated results only rarely beat the base-
line. The multiple regression results were nearly uni-
form which means that the effect of the extra features
and the decompositions was minimal. The final lift
obtained is far too small to be detectable by a user
of such a system. The inescapable conclusion is that
we failed to achieve a significant improvement in the
RMSE task.

Unlike the AUC task, final blending was ineffectual on
the RMSE task: the score of the blended result was
slightly worse than the best individual result13. This
is probably due to there not being enough diversity in

12How is a computer to know that this was the favourite
film of a hated ex and is thus terrible by association?

13The submitted results were still the blended ones, how-
ever, as they should be more resistant to the selection bias
in the validation set
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Table 11. RMSE Blending Results. The lift is 1000 times the improvement over the baseline score. The weight values,
which describe the blending weight in the final model, are reported as mean ± standard deviation.

Task Small Medium Large

Model RMSE Lift Weight RMSE Lift Weight RMSE Lift Weight

dn1 0.4422 -2.4 0.02±0.01 0.4332 -2.5 0.04±0.02 0.4442 -2.3 -0.06±0.03
dn2 0.4485 -8.7 0.02±0.03 0.4407 -10.0 0.03±0.02 0.4495 -7.6 -0.02±0.04
dn3 0.4486 -8.8 0.02±0.04 0.4409 -10.2 0.03±0.03 0.4497 -7.8 0.02±0.07
dn4 0.4421 -2.3 0.02±0.01 0.4332 -2.5 0.03±0.02 0.4442 -2.3 -0.06±0.04

gated 0.4500 -10.2 0.07±0.04 0.4462 -15.5 0.02±0.04 0.4418 0.1 0.09±0.04
gated2 0.4409 -1.1 0.08±0.04 0.4315 -0.8 0.07±0.04 0.4414 0.5 0.09±0.04
gated3 0.4554 -15.6 -0.04±0.03 0.4420 -11.3 0.02±0.04 0.4428 -0.9 0.05±0.04
gated4 0.4490 -9.2 0.03±0.03 0.4393 -8.6 0.00±0.03 0.4419 0.0 0.04±0.05
gated5 0.4620 -22.2 0.03±0.03 0.4487 -18.0 -0.04±0.04 0.4460 -4.1 0.01±0.02
gated6 0.4421 -2.3 0.03±0.04 0.4317 -1.0 0.03±0.04 0.4421 -0.2 0.02±0.05
gated7 0.4394 0.4 0.04±0.02 0.4295 1.2 0.04±0.03 0.4405 1.4 -0.05±0.10

mr1 0.4379 1.9 0.07±0.02 0.4277 3.0 0.10±0.02 0.4386 3.3 0.13±0.04
mr2 0.4377 2.1 0.08±0.01 0.4275 3.2 0.10±0.04 0.4387 3.2 0.10±0.02
mr3 0.4377 2.1 0.07±0.02 0.4276 3.1 0.09±0.03 0.4386 3.3 0.11±0.03
mr4 0.4382 1.6 0.06±0.03 0.4278 2.9 0.08±0.03 0.4386 3.3 0.10±0.06
mr5 0.4379 1.9 0.06±0.02 0.4277 3.0 0.08±0.04 0.4386 3.3 0.10±0.06
mr6 0.4379 1.9 0.07±0.02 0.4277 3.0 0.09±0.03 0.4386 3.3 0.11±0.02
mr7 0.4377 2.1 0.07±0.02 0.4278 2.9 0.06±0.04 0.4385 3.4 0.15±0.09
mr8 0.4377 2.1 0.07±0.02 0.4275 3.2 0.10±0.04 0.4389 3.0 0.07±0.02
mr9 0.4379 1.9 0.06±0.01 0.4278 2.9 0.05±0.05 0.4389 3.0 0.05±0.03

mclass 0.4398 0.0 0.06±0.05 0.4319 -1.2 0.02±0.03 0.4417 0.2 -0.00±0.04
rtrees 0.4411 -1.3 0.05±0.05 0.4321 -1.4 0.02±0.04 0.4427 -0.8 -0.05±0.05

combined 0.4381 1.7 0.4277 3.0 0.4385 3.4

the models blended: there were only a few really dis-
tinct models with reasonable performance, and these
frequently used the same features (from the DNAE,
the SVD and the derived features).

4.4.1. Criticism of quadratic metrics on noisy
data

This phenomena is probably explained by the use of
a RMSE metric, and the amount of noise in the data.
The RMSE metric penalises very heavily incorrect pre-
dictions at the extreme ends of the scale: a prediction
of 1 has 4 times the potential MSE error (16 points)
than a prediction of 3 (4 points). As the noise in the
data increases, it becomes more and more costly to
deviate significantly from the 3 prediction.

Assuming that random noise is added equally to each
label, label 1 already becomes difficult to predict. If
we also consider that label 1 would most likely be used
by people for emotional reactions to films (likely, some
proportion of the 1 ratings are due to vitriol), they
become even more difficult to model.

Row Breakdown It is instructive to break the
dataset into different types of rows, based upon the

ease with which a prediction can be made:

• easy : all models are within one star of the correct
answer;

• possible: at least one model is within one star of
the correct answer;

• impossible: no model is within one star of the
correct answer14.

Table 12 shows the result of this breakdown on the
large RMSE dataset, and the contribution of the differ-
ent row types to the total MSE for the baseline model.
Considering that it is very unlikely that any improve-
ment could be made on these positions, it is still very
important to pick a good middle value for them, as
they account for 1/3 of the error.

The upshot is that it is nearly impossible to make
progress on the RMSE metric, as the noise on the out-
liers is amplified significantly by the RMSE metric. It

14It is could happen that the impossible values be clus-
tered on both sides of the correct answer and that their
mean be a good predictor, but this was not observed in
the data.
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Table 12. Large RMSE training set broken down by row
difficulty. In the last column, we see that 1/3 of the MSE
comes from the impossible positions, which account for just
5.7% of the data.

Category Freq Avg MSE Total MSE

Easy 0.329 0.019 0.0063
Possible 0.614 0.198 0.1216
Impossible 0.057 1.189 0.0678

Total 1.000 0.195 0.1953

would be more useful to either a) use a linear metric
such as the mean error, or b) remove the impossible
entries from the evaluation dataset.

4.5. Cracking Open the Black Box

There is absolutely zero side-channel information ob-
tainable for this task15. Even information that could
normally be used to determine the accuracy of the un-
derlying models (such as the amount of information
about the given movie and user in the training data)
was not available. This information would be useful to
the blender, and it is worth considering how it could
be provided.

In addition, every model made a prediction for every
data point, irregardless of whether or not that predic-
tion was likely to be useful. In other words, the models
were designed to maximise recall.

The author’s previous work on ensembling in compu-
tational linguistics has shown that this strategy is sub-
optimal: precision is far more important than recall,
and it is better for a model to be highly accurate on
a tiny subset of reliably identified examples than be
mediocre on many.

One way to allow for a precision/recall trade-off to be
made is for models to provide both a prediction and a
confidence in that prediction. The confidence gives the
probability that the prediction is correct (for example,
the probability that the output of the model is within
one star of the correct rating). The blender can then
improve the precision of a given model by thresholding
on this confidence value.

The features provided by each model for the confi-
dence function need to provide information about the
failure modes of the algorithm. For example, a statis-
tical model might perform poorly when there is little
data available about the user; in this case, the amount

15Contrast with the Netflix Prize where the identities of
the films were known, which allowed the possibility to ob-
tain further information about the film from the Internet.

Figure 4. Ensembling with confidence information.
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of data available would be provided to the confidence
classifier. An iterative algorithm would provide the
number of iterations required to reach convergance,
and so on. There is not necessarily more work to cre-
ate a (model, confidence function) pair like this: the
algorithm is allowed to make really bad predictions, so
long as its confidence function can predict them. Algo-
rithms can become more focused on modelling exactly
one phenomenon, instead of the Swiss Army Knife that
is necessary when no confidence is provided. If the se-
lection of algorithms is significantly diverse, it will be
possible to predict most examples using mostly infor-
mation from accurate models for that example.

Figure 4 shows one way to implement such a scheme
using a gating function. The confidence classifiers
could either be part of the black box, trained exter-
nally from the features, or learnt implicitly as part of
the gating function (which would receive only the fea-
tures).

4.6. Deep Networks

The final submission for the small AUC task that is
presented in table 10 is not in fact the best results
that were obtained for this task. During develop-
ment of the denoising auto-encoders, an initial auto-
encoder was produced that, when trained into a deep
network using supervised back-propagation, produced
results significantly better than these. However, due
to numerical issues and thread-order non-determinism,
these results could not be duplicated nor even closely
matched. There are two possible explanations. The
first is that, in speeding up the code to run at an
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acceptable speed for the large task, an error was in-
troduced (nearly 2,000 lines of test cases that tested
a lot of the invariants in the system). The second is
that these methods are very sensitive and one needs
to train many models to fall on a good one16.

A large amount of effort was also expended to improve
the speed of back-propagation, which was were most
of the time was spent in training the denoising auto-
encoders and deep network models. The second-order
methods indicated in (LeCun et al., 1998) were imple-
mented; however they tended to be over-enthusiastic
about the learning rate, leading to divergence or os-
cillation. Even the simpler methods to generate an
overall learning rate failed, and it was necessary to fall
back onto manual tuning of parameters.

Perhaps the most important conclusion is that these
models are difficult to get right in practise, and would
require much experience to use successfully: especially
when moved out of the image domain (where most of
the successful work has come from) where it is simple
to visualise what has been learnt and verify that the
models make sense.

5. Conclusion

The AUC task proved to be rich and enjoyable, and
a significant improvement was obtained on this task,
especially on the medium and large datasets. Models
based upon gating of the input models and multiple re-
gressions were successfully used. Further improvement
was achieved by hand-coding features.

The use of unsupervised decompositions to model
the joint distribution of the input variables led to
some success. Both a linear SVD decomposition
and non-linear denoising auto-encoder decompositions
were tried. The denoising auto-encoder decomposi-
tions however did not end up providing good pre-
initialisation for deep neural networks, except for on
one model which could not be reproduced. These mod-
els appear to be difficult to use well and more experi-
ence would have been necessary to use them effectively.

No significant improvements were made on the RMSE
task, due to the interplay of a skewed dataset, the pres-
ence of noise and the quadratic nature of the RMSE
metric. A less severe metric should be adopted or noise
removed from the dataset. Judging from the leader

16Of course, one can make one’s own luck. This is why
practitioners of deep networks suggest to make them both
wide and deep: for each useful generalisation, there is likely
to be a neuron somewhere within a wide enough network
that will learn it. Unfortunately, the computational re-
sources were not available to train significantly wider net-
works than the ones described here.

board on the small task, it is unlikely that any team
managed to achieve a significant improvement over the
baseline.

An improved model of ensembling was proposed,
whereby each model in the ensemble provides not only
a prediction of the target function, but a list of features
that can be used to determine when the model is likely
to be inaccurate. This model requires further work on
the part of the ensemble builders to provide this in-
formation, but would allow the ensembling method to
have significantly more leverage.
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